270002 Advanced Chemometrics with MATLAB

Detaljer
Inst. for Fødevarevidenskab
Tidligst mulig placeringKandidat 1.år til Kandidat 2. år
VarighedEn blok
 
Pointværdi7.5 (ECTS)
KursustypeKandidatkursus
 
EksamenSluteksamen

skriftlig og mundtlig eksamen


Alle hjælpemidler tilladt

Beskrivelse af eksamen: The students will handle in a written report in due time before the oral examination. At the oral examination the students present the results from their projects for fellow students and course teachers. After this presentation all students and teachers participate in a discussion on the project.

Vægtning: The written report: 80 % Oral examination: 20 %



13-skala, intern censur
 
Rammer for undervisningLectures (25%), exercises (25%), colloquia (5%), project work (45%)
 
BlokplaceringBlock 4b
Ugestruktur: Outside schedule

 
UndervisningssprogEngelsk
 
Anbefalede forudsætningerExploratory data analysis / Chemometrics
 
Begrænset deltagerantal50
 
Kompetenceområder
Competences within applied science:
The student will understand the advanced chemometric methods studied during the course. The student will be able to apply principles on similar problems.

The student will understand the application of MATLAB for performing multivariate data analysis.

The student will obtain knowledge of downloading toolbox'es from the internet and knowledge of how to evaluate the performance of these.
 
Kursets målsætning
The course will introduce the student to advanced chemometric methods with focus on food process analytical technological (FPAT) relevance. The software used throughout the course is MATLAB and it is a distinct purpose of the course to make MATLAB a data analytical tool for the students.
 
Kursusindhold
Basic chemometric methods like PCA and PLS are useful tools in data analysis but in many data analytical problems more advanced methods are necessary to solve the problems. Alternatively, advanced data preprocessing techniques are necessary to apply making the data suitable for data analysis with standard chemomeetrics tools.

The methods studied in this course will vary from year to year but each year the main topics are: Data preprocessing methods, linear and non-linear classification techniques, calibration transfer methods, non-linear regression, non-linear exploratory methods, bioinformatic methods, and multi-way methods.

Computer exercises on real data using MATLAB software and toolboxes from the internet are an integrated part of the course. The student will receive a thorough introduction to the MATLAB software at the course introduction.

It is expected that the student have competences corresponding to the course Exploratory Data Analysis / Chemometrics. The methods taught in this course will be "translated" to MATLAB and then a platform for introducing the new methods is established.
 
Undervisningsform
The students will be introduced to the theory through lectures and seminars. The students will work in groups on a data analytical problem using the taught algorithms and MATLAB to analyse the problem. The students can bring their own data analytical problems to work on; this requires that the course teachers consider the data as suitable to illustrate the taught methods. The results are reported in a written report which is orally presented at a seminar at the end of the course.
 
Litteraturhenvisninger
Scientific papers, book chapters and course notes.
 
Kursusansvarlig
Lars Nørgaard, lan@life.ku.dk, Institut for Fødevarevidenskab, Tlf: 35333212
Rasmus Bro, rb@life.ku.dk, Institut for Fødevarevidenskab/Fødevarekvalitet og - Teknologi, Tlf: 35333296
Frans W.J. van den Berg, fb@life.ku.dk, Institut for Fødevarevidenskab/Fødevarekvalitet og - Teknologi, Tlf: 35333545
Jürgen von Frese, jvf@kvl.dk, Institut for Fødevarevidenskab/Fødevarekvalitet og - Teknologi, Tlf: 35283254
 
Studienævn
Studienævn LSN
 
Kursusbeskrivelsesomfang
forelæsninger30
teoretiske øvelser30
kollokvier12
projektarbejde70
ekskursioner8
forberedelse48
eksamen8

206